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Abstract

We study an online learning setting where the player is temporarily deprived of
feedback each time it switches to a different action. Such model of adaptive feed-
back naturally occurs in scenarios where the environment reacts to the player’s ac-
tions and requires some time to recover and stabilize after the algorithm switches
actions. This motivates a variant of the multi-armed bandit problem, which we call
the blinded multi-armed bandit, in which no feedback is given to the algorithm
whenever it switches arms. We develop efficient online learning algorithms for
this problem and prove that they guarantee the same asymptotic regret as the op-
timal algorithms for the standard multi-armed bandit problem. This result stands
in stark contrast to another recent result, which states that adding a switching cost
to the standard multi-armed bandit makes it substantially harder to learn, and pro-
vides a direct comparison of how feedback and loss contribute to the difficulty
of an online learning problem. We also extend our results to the general predic-
tion framework of bandit linear optimization, again attaining near-optimal regret
bounds.

1 Introduction

The adversarial multi-armed bandit problem [4] is a T -round prediction game played by a random-
ized player in an adversarial environment. On each round of the game, the player chooses an arm
(also called an action) from some finite set, and incurs the loss associated with that arm. The player
can choose the arm randomly, by choosing a distribution over the arms and then drawing an arm
from that distribution. He observes the loss associated with the chosen arm, but he does not observe
the loss associated with any of the other arms. The player’s cumulative loss is the sum of all the loss
values that he incurs during the game. To minimize his cumulative loss, the player must trade-off
exploration (trying different arms to observe their loss values) and exploitation (choosing a good
arm based on historical observations).

The loss values are assigned by the adversarial environment before the game begins. Each of the
loss values is constrained to be in [0, 1] but otherwise they can be arbitrary. Since the loss values are
set beforehand, we say that the adversarial environment is oblivious to the player’s actions.

The performance of a player strategy is measured in the standard way, using the game-theoretic
notion of regret (formally defined below). Auer et al. [4] present a player strategy called EXP3,
prove that it guarantees a worst-case regret of O(

√
T ) on any oblivious assignment of loss values,

and prove that this guarantee is the best possible. A sublinear upper bound on regret implies that the
player’s strategy improves over time and is therefore a learning strategy, but if this upper bound has
a rate of O(

√
T ) then the problem is called an easy1 online learning problem.

1The classification of online problems into easy vs. hard is borrowed from Antos et al. [2].
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In this paper, we study a variant of the standard multi-armed bandit problem where the player is
temporarily blinded each time he switches arms. In other words, if the player’s current choice is
different than his choice on the previous round then we say that he has switched arms, he incurs the
loss as before, but he does not observe this loss, or any other feedback. On the other hand, if the
player chooses the same arm that he chose on the previous round, he incurs and observes his loss as
usual2. We call this setting the blinded multi-armed bandit.

For example, say that the player’s task is to choose an advertising campaign (out of k candidates) to
reduce the frequency of car accidents. Even if a new advertising campaign has an immediate effect,
the new accident rate can only be measured over time (since we must wait for a few accidents to
occur) and the environment’s reaction to the change cannot be observed immediately.

The blinded bandit setting can also be used to model problems where a switch introduces a tempo-
rary bias into the feedback, which makes this feedback useless. A good example is the well-known
primacy and novelty effect [14, 15] that occurs in human-computer interaction. Say that we operate
an online restaurant directory and the task is to choose the best user interface (UI) for our site (from
a set of k candidates). The quality of a UI is measured by the the time it takes the user to complete
a successful interaction with our system. Whenever we switch to a new UI, we encounter a primacy
effect: users are initially confused by the unfamiliar interface and interaction times artificially in-
crease. In some situations, we may encounter the opposite, a novelty effect: a fresh new UI could
intrigue users, increase their desire to engage with the system, and temporarily decrease interac-
tion times. In both cases, feedback is immediately available, but each switch makes the feedback
temporarily unreliable.

There are also cases where switching introduces a variance in the feedback, rather than a bias.
Almost any setting where the feedback is measured by a physical sensor, such as a photometer or a
digital thermometer, fits in this category. Most physical sensors apply a low-pass filter to the signal
they measure and a low-pass filter in the frequency domain is equivalent to integrating the signal
over a sliding window in the time domain. While the sensor may output an immediate reading, it
needs time to stabilize and return to an adequate precision.

The blinded bandit setting bears a close similarity to another setting called the adversarial multi-
armed bandit with switching costs. In that setting, the player incurs an additional loss each time he
switches arms. This penalty discourages the player from switching frequently. At first glance, it
would seem that the practical problems described above could be formulated and solved as multi-
armed bandit problems with switching costs and one might question the need for our new blinded
bandit setting. However, Dekel et al. [12] recently proved that the adversarial multi-armed bandit
with switching costs is a hard online learning problem, which is a problem where the best possible
regret guarantee is Θ̃(T 2/3). In other words, for any learning algorithm, there exists an oblivious
setting of the loss values that forces a regret of Ω̃(T 2/3).

In this paper, we present a new algorithm for the blinded bandit setting and prove that it guarantees a
regret ofO(

√
T ) on any oblivious sequence of loss values. In other words, we prove that the blinded

bandit is surprisingly as easy as the standard multi-armed bandit setting, despite its close similarity to
the hard multi-armed bandit with switching costs problem. Our result has a theoretical significance
and a practical significance. Theoretically, it provides a direct comparison of how feedback and
loss contribute to the difficulty of an online learning problem. Practically, it identifies a rich and
important class of online learning problems that would seem to be a natural fit for the multi-armed
bandit setting with switching costs, but are in fact much easier to learn. Moreover, to the best of our
knowledge, our work is the first to consider online learning in an setting where the loss values are
oblivious to the player’s past actions but the feedback is adaptive.

We also extend our results and study a blinded version of the more general bandit linear optimization
setting. The bandit linear optimization framework is useful for efficiently modeling problems of
learning under uncertainty with extremely large, yet structured decision sets. For example, consider
the problem of online routing in networks [5], where our task is to route a stream of packets between
two nodes in a computer network. While there may be exponentially many paths between the two
nodes, the total time it takes to send a packet is simply the sum of the delays on each edge in the
path. If the route is switched in the middle of a long streaming transmission, the network protocol

2More generally, we could define a setting where the player is blinded for m rounds following each switch,
but for simplicity we focus on m = 1.

2



needs a while to find the new optimal transmission rate, and the delay of the first few packets after
the switch can be arbitrary. This view on the packet routing problem demonstrates the need for a
blinded version of bandit linear optimization.

The paper is organized as follows. In Section 2 we formalize the setting and lay out the necessary
definitions. Section 3 is dedicated to presenting our main result, which is an optimal algorithm for
the blinded bandit problem. In Section 4 we extend this result to the more general setting of bandit
linear optimization. We conclude in Section 5.

2 Problem Setting

To describe our contribution to this problem and its significance compared to previous work, we first
define our problem setting more formally and give some background on the problem.

As mentioned above, the player plays a T -round prediction game against an adversarial environment.
Before the game begins, the environment picks a sequence of loss functions `1, . . . , `T : K 7→ [0, 1]
that assigns loss values to arms from the setK = {1, . . . , k}. On each round t, the player chooses an
arm xt ∈ K, possibly at random, which results in a loss `t(xt). In the standard multi-armed bandit
setting, the feedback provided to the player at the end of round t is the number `t(xt), whereas the
other values of the function `t are never observed.

The player’s expected cumulative loss at the end of the game equals E[
∑T
t=1 `t(xt)]. Since the loss

values are assigned adversarially, the player’s cumulative loss is only meaningful when compared
to an adequate baseline; we compare the player’s cumulative loss to the cumulative loss of a fixed
policy, which chooses the same arm on every round. Define the player’s regret as

R(T ) = E

[
T∑
t=1

`t(xt)

]
− min

x∈K

T∑
t=1

`t(x) . (1)

Regret can be positive or negative. If R(T ) = o(T ) (namely, the regret is either negative or grows at
most sublinearly with T ), we say that the player is learning. Otherwise, if R(T ) = Θ(T ) (namely,
the regret grows linearly with T ), it indicates that the player’s per-round loss does not decrease with
time and therefore we say that the player is not learning.

In the blinded version of the problem, the feedback on round t, i.e. the number `t(xt), is revealed to
the player only if he chooses xt to be the same as xt−1. On the other hand, if xt 6= xt−1, then the
player does not observe any feedback. The blinded bandit game is summarized in Fig. 1.

Parameters: action set K, time horizon T
• Environment determines a sequence of loss functions `1, . . . , `T : K 7→ [0, 1]

• On each round t = 1, 2, . . . , T :
1. Player picks an action xt ∈ K and suffers the loss `t(xt) ∈ [0, 1]

2. If xt = xt−1, the number `t(xt) is revealed as feedback to the player
3. Otherwise, if xt 6= xt−1, the player gets no feedback from the environment

Figure 1: The blinded bandit game.

Bandit Linear Optimization. In Section 4, we consider the more general setting of online linear
optimization with bandit feedback [10, 11, 1]. In this problem, on round t of the game, the player
chooses an action, possibly at random, which is a point xt in a fixed action set K ⊂ Rn. The loss
he suffers on that round is then computed by a linear function `t(xt) = `t · xt, where `t ∈ Rn is a
loss vector chosen by the oblivious adversarial environment before the game begins. To ensure that
the incurred losses are bounded, we assume that the loss vectors `1, . . . , `T are admissible, that is,
they satisfy |`t · x| ≤ 1 for all t and x ∈ K (in other words, the loss vectors reside in the polar set
of K). As in the multi-armed bandit problem, the player only observes the loss he incurred, and the
full loss vector `t is never revealed to him. The player’s performance is measured by his regret, as
defined above in Eq. (1).
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3 Algorithm

We recall the classic EXP3 algorithm for the standard multi-armed bandit problem, and specifically
focus on the version presented in Bubeck and Cesa-Bianchi [6]. The player maintains a probability
distribution over the arms, which we denote by pt ∈ ∆(K) (where ∆(K) denotes the set of probabil-
ity measures overK, which is simply the k-dimensional simplex whenK = {1, 2, . . . , k}). Initially,
p1 is set to the uniform distribution ( 1

k , . . . ,
1
k ). On round t, the player draws xt according to pt,

incurs and observes the loss `t(xt), and applies the update rule

∀ x ∈ K, pt+1(x) ∝ pt(x) · exp

(
−η `t(xt)

pt(xt)
· 11x=xt

)
.

EXP3 provides the following regret guarantee, which depends on the user-defined learning rate
parameter η:

Theorem 1 (due to Auer et al. [4], taken from Bubeck and Cesa-Bianchi [6]). Let `1, . . . , `T be an
arbitrary loss sequence, where each `t : K 7→ [0, 1]. Let x1, . . . , xT be the random sequence of
arms chosen by EXP3 (with learning rate η > 0) as it observes this sequence. Then,

R(T ) ≤ ηkT

2
+

log k

η
.

EXP3 cannot be used in the blinded bandit setting because the EXP3 update rule cannot be called
on rounds where a switch occurs. Also, since switching actions Ω(T ) times is, in general, required
for obtaining the optimal O(

√
T ) regret (see [12]), the player must avoid switching actions too fre-

quently and often stick with the action that was chosen on the previous round. Due to the adversarial
nature of the problem, randomization must be used in controlling the scheme of action switches.

We propose a variation on EXP3, which is presented in Algorithm 1. Our algorithm begins by
drawing a sequence of independent Bernoulli random variables b0, b1, . . . , bT+1 (i.e., such that
P(bt = 0) = P(bt = 1) = 1

2 ). This sequence determines the schedule of switches and updates
for the entire game. The algorithm draws a new arm (and possibly switches) only on rounds where
bt−1 = 0 and bt = 1 and invokes the EXP3 update rule only on rounds where bt = 0 and bt+1 = 1.
Note that these two events can never co-occur. Specifically, the algorithm always invokes the update
rule one round before the potential switch occurs. This confirms that the algorithm relies on the
value of `t(xt) only on non-switching rounds.

Algorithm 1: BLINDED EXP3

set p1 ← ( 1
k , . . . ,

1
k ), draw x0 ∼ p1

draw b0, . . . , bT+1 i.i.d. unbiased Bernoullis

for t = 1, 2, . . . , T
if bt−1 = 0 and bt = 1

draw xt ∼ pt // possible switch
else

set xt ← xt−1 // no switch

play arm xt and incur loss `t(xt)

if bt = 0 and bt+1 = 1
observe `t(xt) and for all x ∈ K, update

wt+1(x) ← pt(x) · exp

(
−η `t(xt)

pt(xt)
· 11x=xt

)
set pt+1 ← wt+1/‖wt+1‖1

else
set pt+1 ← pt

We set out to prove the following regret bound.
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Theorem 2. Let `1, . . . , `T be an arbitrary loss sequence, where each `t : K 7→ [0, 1]. Let
x1, . . . , xT be the random sequence of arms chosen by Algorithm 1 as it plays the blinded ban-

dit game on this sequence (with learning rate fixed to η =
√

2 log k
kT ). Then,

R(T ) ≤ 6
√
Tk log k .

We prove Theorem 2 with the below sequence of lemmas. In the following, we let `1, . . . , `T be
an arbitrary loss sequence and let x1, . . . , xT be the sequence of arms chosen by Algorithm 1 (with
parameter η > 0). First, we define the set

S =
{
t ∈ [T ] : bt = 0 and bt+1 = 1

}
.

In words, S is a random subset of [T ] that indicates the rounds on which Algorithm 1 uses its
feedback and applies the EXP3 update.
Lemma 1. For any x ∈ K, it holds that

E

[∑
t∈S

`t(xt)−
∑
t∈S

`t(x)

]
≤ ηkT

8
+

log k

η
.

Proof. For any concrete instantiation of b0, . . . , bT+1, the set S is fixed and the sequence (`t)t∈S is
an oblivious sequence of loss functions. Note that the steps performed by Algorithm 1 on the rounds
indicated in S are precisely the steps that the standard EXP3 algorithm would perform if it were
presented with the loss sequence (`t)t∈S . Therefore, Theorem 1 guarantees that

E

[∑
t∈S

`t(xt)−
∑
t∈S

`t(x)

∣∣∣∣∣ S
]
≤ ηk|S|

2
+

log k

η
.

Taking expectations on both sides of the above and noting that E[|S|] ≤ T/4 proves the lemma.

Lemma 1 proves a regret bound that is restricted to the rounds indicated by S. The following lemma
relates that regret to the total regret, on all T rounds.
Lemma 2. For any x ∈ K, we have

E

[
T∑
t=1

`t(xt)

]
−

T∑
t=1

`t(x) ≤ 4E

[∑
t∈S

`t(xt)−
∑
t∈S

`t(x)

]
+ E

[
T∑
t=1

‖pt − pt−1‖1

]
.

Proof. Using the definition of S, we have

E

[∑
t∈S

`t(x)

]
=

T∑
t=1

`t(x)E[(1− bt)bt+1] =
1

4

T∑
t=1

`t(x) . (2)

Similarly, we have

E

[∑
t∈S

`t(xt)

]
=

T∑
t=1

E
[
`t(xt) (1− bt)bt+1

]
. (3)

We focus on the t’th summand in the right-hand side above. Since bt+1 is independent of `t(xt)(1−
bt), it holds that

E
[
`t(xt)(1− bt)bt+1

]
= E[bt+1]E

[
`t(xt)(1− bt)

]
=

1

2
E
[
`t(xt)(1− bt)

]
.

Using the law of total expectation, we get

1

2
E
[
`t(xt)(1− bt)

]
=

1

4
E
[
`t(xt)(1− bt)

∣∣∣ bt = 0
]

+
1

4
E
[
`t(xt)(1− bt)

∣∣∣ bt = 1
]

=
1

4
E
[
`t(xt)

∣∣ bt = 0
]
.
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If bt = 0 then Algorithm 1 sets xt ← xt−1 so we have that xt = xt−1. Therefore, the above equals
1
4E[`t(xt−1) | bt = 0]. Since xt−1 is independent of bt, this simply equals 1

4E[`t(xt−1)]. Hölder’s
inequality can be used to upper bound

E[`t(xt)− `t(xt−1)] = E
[∑
x∈K

(
pt(x)− pt−1(x)

)
`t(x)

]
≤ E[‖pt − pt−1‖1] ·max

x∈K
`t(x) ,

where we have used the fact that xt and xt−1 are distributed according to pt and pt−1 respectively
(regardless of whether an update took place or not). Since it is assumed that `t(x) ∈ [0, 1] for all t
and x ∈ K, we obtain

1

4
E
[
`t(xt−1)

]
≥ 1

4

(
E
[
`t(xt)

]
− E[‖pt − pt−1‖1]

)
.

Overall, we have shown that

E
[
`t(xt)(1− bt)bt+1

]
≥ 1

4

(
E
[
`t(xt)

]
− E[‖pt − pt−1‖1]

)
.

Plugging this inequality back into Eq. (3) gives

E

[∑
t∈S

`t(xt)

]
≥ 1

4
E

[
T∑
t=1

`t(xt)−
T∑
t=1

‖pt − pt−1‖1

]
.

Summing the inequality above with the one in Eq. (2) concludes the proof.

Next, we prove that the probability distributions over arms do not change much on consecutive
rounds of EXP3.
Lemma 3. The distributions p1, p2, . . . , pT generated by the BLINDED EXP3 algorithm satisfy
E[‖pt+1 − pt‖1] ≤ 2η for all t.

Proof. Fix a round t; we shall prove the stronger claim that ‖pt+1 − pt‖1 ≤ 2η with probability 1.
If no update had occurred on round t and pt+1 = pt, this holds trivially. Otherwise, we can use the
triangle inequality to bound

‖pt+1 − pt‖1 ≤ ‖pt+1 − wt+1‖1 + ‖wt+1 − pt‖1 ,
with the vector wt+1 as specified in Algorithm 1. Letting Wt+1 = ‖wt+1‖1 we have pt+1 =
wt+1/Wt+1, so we can rewrite the first term on the right-hand side above as

‖pt+1 −Wt+1 · pt+1‖1 = |1−Wt+1| · ‖pt+1‖1 = 1−Wt+1 = ‖pt − wt+1‖1 ,
where the last equality follows by observing that pt ≥ wt+1 entrywise, ‖pt‖1 = 1 and ‖wt+1‖1 =
Wt+1. By the definition of wt+1, the second term on the right-hand side above equals pt(xt) ·

(
1−

e−η`t(xt)/pt(xt)
)
. Overall, we have

‖pt+1 − pt‖1 ≤ 2pt(xt) ·
(
1− e−η`t(xt)/pt(xt)

)
.

Using the inequality 1 − exp(−α) ≤ α, we get ‖pt+1 − pt‖1 ≤ 2η`t(xt). The claim now follows
from the assumption that `t(xt) ∈ [0, 1].

We can now proceed to prove our regret bound.

Proof of Theorem 2. Combining the bounds of Lemmas 1–3 proves that for any fixed arm x ∈ K, it
holds that

E

[
T∑
t=1

`t(xt)

]
−

T∑
t=1

`t(x) ≤ ηkT

2
+

4 log k

η
+ 2ηT

≤ 2ηkT +
4 log k

η
.

Specifically, the above holds for the best arm in hindsight. Setting η =
√

2 log k
kT proves the theorem.
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4 Blinded Bandit Linear Optimization

In this section we extend our results to the setting of linear optimization with bandit feedback,
formally defined in Section 2. We focus on the GEOMETRICHEDGE algorithm [11], that was the
first algorithm for the problem to attain the optimal O(

√
T ) regret, and adapt it to the blinded setup.

Our BLINDED GEOMETRICHEDGE algorithm is detailed in Algorithm 2. The algorithm uses a
mechanism similar to that of Algorithm 1 for deciding when to avoid switching actions. Following
the presentation of [11], we assume that K ⊆ [−1, 1]n is finite and that the standard basis vectors
e1, . . . , en are contained inK. Then, the set E = {e1, . . . , en} is a barycentric spanner ofK [5] that
serves the algorithm as an exploration basis. We denote the uniform distribution over E by uE .

Algorithm 2: BLINDED GEOMETRICHEDGE

Parameter: learning rate η > 0

let q1 be the uniform distribution over K, and draw x0 ∼ q1
draw b0, . . . , bT+1 i.i.d. unbiased Bernoullis
set γ ← n2η

for t = 1, 2, . . . , T
set pt ← (1− γ) qt + γ uE
compute covariance Ct ← Ex∼pt [xx>]

if bt−1 = 0 and bt = 1
draw xt ∼ pt // possible switch

else
set xt ← xt−1 // no switch

play arm xt and incur loss `t(xt) = `t · xt
if bt = 0 and bt+1 = 1

observe `t(xt) and let ˆ̀
t ← `t(xt) · C−1t xt

update qt+1(x) ∝ qt(x) · exp(−η ˆ̀
t · x)

else
set qt+1 ← qt

The main result of this section is an O(
√
T ) upper-bound over the expected regret of Algorithm 2.

Theorem 3. Let `1, . . . , `T be an arbitrary sequence of linear loss functions, admissible with respect
to the action setK ⊆ Rn. Let x1, . . . , xT be the random sequence of arms chosen by Algorithm 2 as

it plays the blinded bandit game on this sequence, with learning rate fixed to η =
√

log(nT )
10nT . Then,

R(T ) ≤ 4n3/2
√
T log(nT ) .

With minor modifications, our technique can also be applied to variants of the GEOMET-
RICHEDGE algorithm (that differ by their exploration basis) for obtaining regret bounds with im-
proved dependence of the dimension n. This includes the COMBAND algorithm [8], EXP2 with
John’s exploration [7], and the more recent version employing volumetric spanners [13].

We now turn to prove Theorem 3. Our first step is proving an analogue of Lemma 1, using the regret
bound of the GEOMETRICHEDGE algorithm proved by Dani et al. [11].

Lemma 4. For any x ∈ K, it holds that E
[∑

t∈S `t(xt)−
∑
t∈S `t(x)

]
≤ ηn2T

2 + n log(nT )
2η .

We proceed to prove that the distributions generated by Algorithm 2 do not change too quickly.

Lemma 5. The distributions p1, p2, . . . , pT produced by the BLINDED GEOMETRICHEDGE algo-
rithm (from which the actions x1, x2, . . . , xT are drawn) satisfy E[‖pt+1 − pt‖1] ≤ 4η

√
n for all t.

The proofs of both lemmas are deferred to Appendix A. We now prove Theorem 3.
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Proof of Theorem 3. Notice that the bound of Lemma 2 is independent of the construction of the
distributions p1, p2, . . . , pT and the structure of K, and thus applies for Algorithm 2 as well. Com-
bining this bound with the results of Lemmas 4 and 5, it follows that for any fixed action x ∈ K,

E

[
T∑
t=1

`t(xt)

]
−

T∑
t=1

`t(x) ≤ ηn2T

2
+
n log(nT )

2η
+ 4η

√
nT ≤ 5ηn2T +

n log(nT )

2η
.

Setting η =
√

log(nT )
10nT proves the theorem.

5 Discussion and Open Problems

In this paper, we studied a new online learning scenario where the player receives feedback from
the adversarial environment only when his action is the same as the one from the previous round, a
setting that we named the blinded bandit. We devised an optimal algorithm for the blinded multi-
armed bandit problem based on the EXP3 strategy, and used similar ideas to adapt the GEOMET-
RICHEDGE algorithm to the blinded bandit linear optimization setting. In fact, a similar analysis
can be applied to any online algorithm that does not change its underlying prediction distributions
too quickly (in total variation distance).

In the practical examples given in the introduction, where each switch introduces a bias or a vari-
ance, we argued that the multi-armed bandit problem with switching costs is an inadequate solution,
since it is unreasonable to solve an easy problem by reducing it to one that is substantially harder.
Alternatively, one might consider simply ignoring the noise in the feedback after each switch and
using a standard adversarial multi-armed bandit algorithm like EXP3 despite the bias or the vari-
ance. However, if we do that, the player’s observed losses would no longer be oblivious (as the
observed loss on round t would depend on xt−1), and the regret guarantees of EXP3 would no
longer hold3. Moreover, any multi-armed bandit algorithm with O(

√
T ) regret can be forced to

make Θ(T ) switches [12], so the loss observed by the player could actually be non-oblivious in a
constant fraction of the rounds, which would deteriorate the performance of EXP3.

Our setting might seem similar to the related problem of label-efficient prediction (with bandit feed-
back), see [9]. In the label-efficient prediction setting, the feedback for the action performed on
some round is received only if the player explicitly asks for it. The player may freely choose when
to observe feedback, subject to a global constraint on the number of total feedback queries. In con-
trast, in our setting there is a strong correlation between the actions the player takes and the presence
of the feedback signal. As a consequence, the player is not free to decide when he observes feedback
as in the label-efficient setting. Another setting that may seem closely related to our setting is the
multi-armed bandit problem with delayed feedback [16, 17]. In this setting, the feedback for the
action performed on round t is received at the end of round t+1. However, note that in all of the ex-
amples we have discussed, the feedback is always immediate, but is either nonexistent or unreliable
right after a switch. The important aspect of our setup, which does not apply to the label-efficient
and delayed feedback settings, is that the feedback adapts to the player’s past actions.

Our work leaves a few interesting questions for future research. A closely related adaptive-feedback
problem is one where feedback is revealed only on rounds where the player does switch actions.
Can the player attain O(

√
T ) regret in this setting as well, or is the need to constantly switch actions

detrimental to the player? More generally, we can consider other multi-armed bandit problems with
adaptive feedback, where the feedback depends on the player’s actions on previous rounds. It would
be quite interesting to understand what kind of adaptive-feedback patterns give rise to easy problems,
for which a regret of O(

√
T ) is attainable. Specifically, is there a problem with oblivious losses and

adaptive feedback whose minimax regret is Θ̃(T 2/3), as is the case with adaptive losses?
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against non-oblivious adversaries. These bounds are irrelevant in our setting—see Arora et al. [3].
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A Omitted Proofs

A.1 Proof of Lemma 4

For the proof we need the following regret bound of the GEOMETRICHEDGE algorithm.

Theorem 4 (adapted from Dani et al. [11]). Let `1, . . . , `T be an arbitrary sequence of linear loss
functions, admissible with respect to the action setK ⊆ Rn. Let x1, . . . , xT be the random sequence
of arms chosen by GEOMETRICHEDGE (with learning rate η > 0) as it observes this sequence.
Then,

R(T ) ≤ 2ηn2T +
n log(nT )

2η
.

Proof of Lemma 4. Similarly to the proof of Lemma 1, we notice that the steps performed by Algo-
rithm 2 on the rounds in S are precisely the steps the standard GEOMETRICHEDGE algorithm would
perform on the loss sequence (`t)t∈S . Applying Theorem 4, we obtain that

E

[∑
t∈S

`t(xt)−
∑
t∈S

`t(x)

∣∣∣∣∣S
]
≤ ηn2|S|

2
+
n log(n|S|)

2η
.

Taking expectations on both sides of the above and noting that E[|S|] ≤ T/4 (and S ≤ T with
probability 1) proves the lemma.

A.2 Proof of Lemma 5

For proving Lemma 5 we need the two following bounds, that are similar to Lemmas 3.4 and 3.7 in
Dani et al. [11].

Lemma 6. For all t ∈ [T ] and x ∈ K it holds that |ˆ̀t · x| ≤ 1/η.

Proof. We first lower-bound the eigenvalues of the positive semidefinite covariance matrix Ct. To
this end, we fix some unit vector y ∈ Rn and lower-bound the quantity y>Cty. Using the definition
of Ct and since pt ≥ γ · uE , we have

y>Cty = y>Ex∼pt [xx>]y = Ex∼pt [(x · y)2]

≥ γ
∑
x∈E

1

|E|
(x · y)2 =

γ

n

n∑
i=1

(ei · y)2

=
γ

n
‖y‖2 =

γ

n
.

Hence, the eigenvalues of the inverse matrix C−1t are upper-bounded by n/γ. Consequently, for all
x ∈ K we have

|ˆ̀t · x| = |`t(xt)x>t C−1t x|
≤ ‖C−1t ‖2 · ‖xt‖ · ‖x‖

≤ n2

γ
=

1

η
,

where we have used our choice of γ = n2η and the fact that ‖x‖ ≤
√
n for all x ∈ K.

Lemma 7. For all t ∈ [T ],

Ex∼qt [x>C
−1
t x] ≤ n

1− γ
.

Proof. By the definition of the distribution pt, we have

qt =
1

1− γ
pt −

γ

1− γ
uE ≤

1

1− γ
pt ,
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thus,

Ex∼qt [x>C
−1
t x] ≤ 1

1− γ
Ex∼pt [x>C

−1
t x] .

However, since Ct = Ex∼pt [xx>] we obtain
Ex∼pt [x>C

−1
t x] = Ex∼pt [trace(C−1t · xx>)]

= trace(C−1t · Ex∼pt [xx>])

= trace(C−1t · Ct) = n ,

and the lemma follows.

We can now prove Lemma 5.

Proof of Lemma 5. Fixing a round number t, we shall prove that ‖pt+1 − pt‖1 ≤ 2η with proba-
bility 1, from which the lemma immediately follows. The claim is trivial if an update did not take
place on round t and qt+1 = qt; otherwise, we have qt+1(x) ∝ qt(x) · e−η ˆ̀t·x. Let us first bound
the distance between the distributions qt+1 and qt. Denote

wt+1(x) = qt(x) · e−η ˆ̀t·x

for all x ∈ K, so that qt+1 = wt+1/Wt+1 with Wt+1 =
∑
x∈K wt+1(x). Then, by the triangle

inequality,
‖qt+1 − qt‖1 ≤ ‖qt+1 − wt+1‖1 + ‖wt+1 − qt‖1. (4)

For the first term, note that
‖qt+1 − wt+1‖1 = ‖qt+1 −Wt+1 qt+1‖1 = |1−Wt+1|

=

∣∣∣∣∣∑
x∈K

qt(x)− wt+1(x)

∣∣∣∣∣
≤
∑
x∈K
|qt(x)− wt+1(x)|

= ‖wt+1 − qt‖1 . (5)

For the second term, we use the fact that |ˆ̀t · x| ≤ 1/η for all t and x ∈ K, provided by Lemma 6,
to get

‖wt+1 − qt‖1 =
∑
x∈K

qt(x) ·
∣∣1− e−η ˆ̀t·x∣∣

≤
∑
x∈K

qt(x) · |2η ˆ̀
t · x|

= 2η Ex∼qt [|ˆ̀t · x|] , (6)
where we have used the inequality |1− e−x| ≤ 2 |x| valid for −1 ≤ x ≤ 1. Using Jensen’s
inequality and Lemma 7, we can further bound the expectation on the right hand side,(

E[|ˆ̀t · x|]
)2 ≤ E[(ˆ̀

t · x)2] = Ex∼qtExt∼pt [(
ˆ̀
t · x)2]

≤ Ex∼qt [x>C
−1
t x]

≤ n

1− γ
. (7)

Putting Eqs. (4)–(7) together gives

‖qt+1 − qt‖1 ≤ 4η

√
n

1− γ
.

Finally, noticing that pt+1 − pt = (1− γ)(qt+1 − qt) yields
‖pt+1 − pt‖1 = (1− γ) · ‖qt+1 − qt‖1

≤ 4η
√
n(1− γ)

≤ 4η
√
n ,

and the proof is complete.
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