I’m an Associate Professor in The Blavatnik School of Computer Science and AI at Tel Aviv University and a Senior Research Scientist at Google Research, Tel Aviv. I received my PhD from the Technion—Israel Institute of Technology.
My research interests are in machine learning, optimization, and reinforcement learning.
Flat Minima and Generalization: Insights from Stochastic Convex Optimization.
Matan Schliserman,
Shira Vansover-Hager,
Tomer Koren.
Oral presentation at OPT 2025
[arXiv]
Convergence and Sample Complexity of First-Order Methods for Agnostic Reinforcement Learning.
Uri Sherman,
Tomer Koren,
Yishay Mansour.
Preliminary version in ARLET 2025
[arXiv]
Nearly Optimal Sample Complexity for Learning with Label Proportions.
Lorne Applebaum,
Travis Dick,
Claudio Gentile,
Haim Kaplan,
Tomer Koren.
[arXiv]
Benefits of Learning Rate Annealing for Tuning-Robustness in Stochastic Optimization.
Amit Attia,
Tomer Koren.
Preliminary version in OPT 2025
[arXiv]
From Continual Learning to SGD and Back: Better Rates for Continual Linear Models.
Itay Evron,
Ran Levinstein,
Matan Schliserman,
Uri Sherman,
Tomer Koren,
Daniel Soudry,
Nathan Srebro.
[arXiv]
Complexity of Vector-valued Prediction: From Linear Models to Stochastic Convex Optimization.
Matan Schliserman,
Tomer Koren.
[arXiv]
A General Reduction for High-Probability Analysis with General Light-Tailed Distributions.
Amit Attia,
Tomer Koren.
[arXiv]
Fast Last-Iterate Convergence of SGD in the Smooth Interpolation Regime.
Amit Attia,
Matan Schliserman,
Uri Sherman,
Tomer Koren.
NeurIPS 2025
(to appear)
[arXiv]
From Contextual Combinatorial Semi-Bandits to Bandit List Classification: Improved Sample Complexity with Sparse Rewards.
Liad Erez,
Tomer Koren.
NeurIPS 2025
(to appear)
[arXiv]
Multiclass Loss Geometry Matters for Generalization of Gradient Descent in Separable Classification.
Matan Schliserman,
Tomer Koren.
NeurIPS 2025
(to appear)
[arXiv]
Optimal Rates in Continual Linear Regression via Increasing Regularization.
Ran Levinstein,
Amit Attia,
Matan Schliserman,
Uri Sherman,
Tomer Koren,
Daniel Soudry,
Itay Evron.
NeurIPS 2025
(to appear)
[arXiv]
Multiplicative Reweighting for Robust Neural Network Optimization.
Noga Bar,
Raja Giryes,
Tomer Koren.
SIAM Journal on Imaging Sciences
(to appear)
[arXiv]
Rapid Overfitting of Multi-Pass SGD in Stochastic Convex Optimization.
Shira Vansover-Hager,
Tomer Koren,
Roi Livni.
ICML 2025
(Spotlight)
[arXiv]
Convergence of Policy Mirror Descent Beyond Compatible Function Approximation.
Uri Sherman,
Tomer Koren,
Yishay Mansour.
ICML 2025
[arXiv]
Faster Stochastic Optimization with Arbitrary Delays via Adaptive Asynchronous Mini-Batching.
Amit Attia,
Tomer Koren.
ICML 2025
[arXiv]
Nearly Optimal Sample Complexity for Learning with Label Proportions.
Robert Busa-Fekete,
Travis Dick,
Claudio Gentile,
Haim Kaplan,
Tomer Koren,
Uri Stemmer.
ICML 2025
[arXiv]
Dueling Convex Optimization with General Preferences.
Aadirupa Saha,
Tomer Koren,
Yishay Mansour.
ICML 2025
[arXiv]
Locally Optimal Descent for Dynamic Stepsize Scheduling.
Gilad Yehudai,
Alon Cohen,
Amit Daniely,
Yoel Drori,
Tomer Koren,
Mariano Schain.
AISTATS 2025
[arXiv]
The Dimension Strikes Back with Gradients: Generalization of Gradient Methods in Stochastic Convex Optimization.
Matan Schliserman,
Uri Sherman,
Tomer Koren.
ALT 2025
(Outstanding Paper Award);
Oral presentation at OPT 2024
[arXiv]
Fast Rates for Bandit PAC Multiclass Classification.
Liad Erez,
Alon Cohen,
Tomer Koren,
Yishay Mansour,
Shay Moran.
NeurIPS 2024
[arXiv]
Private Online Learning via Lazy Algorithms.
Hilal Asi,
Tomer Koren,
Daogao Liu,
Kunal Talwar.
NeurIPS 2024
[arXiv]
Rate-Optimal Policy Optimization for Linear Markov Decision Processes.
Uri Sherman,
Alon Cohen,
Tomer Koren,
Yishay Mansour.
ICML 2024
(Oral)
[arXiv]
How Free is Parameter-Free Stochastic Optimization?
Amit Attia,
Tomer Koren.
ICML 2024
(Spotlight)
[arXiv]
The Real Price of Bandit Information in Multiclass Classification.
Liad Erez,
Alon Cohen,
Tomer Koren,
Yishay Mansour,
Shay Moran.
COLT 2024
[arXiv]
Faster Convergence with Multiway Preferences.
Aadirupa Saha,
Vitaly Feldman,
Tomer Koren,
Yishay Mansour.
AISTATS 2024
[arXiv]
Tight Risk Bounds for Gradient Descent on Separable Data.
Matan Schliserman,
Tomer Koren.
NeurIPS 2023
(Spotlight)
[arXiv]
Improved Regret for Efficient Online Reinforcement Learning with Linear Function Approximation.
Uri Sherman,
Tomer Koren,
Yishay Mansour.
ICML 2023
[arXiv]
SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance.
Amit Attia,
Tomer Koren.
ICML 2023
[arXiv]
Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime.
Hilal Asi,
Vitaly Feldman,
Tomer Koren,
Kunal Talwar.
ICML 2023
[arXiv]
Regret Minimization and Convergence to Equilibria in General-sum Markov Games.
Liad Erez,
Tal Lancewicki,
Uri Sherman,
Tomer Koren,
Yishay Mansour.
ICML 2023
[arXiv]
Private Online Prediction from Experts: Separations and Faster Rates.
Hilal Asi,
Vitaly Feldman,
Tomer Koren,
Kunal Talwar.
COLT 2023;
Oral presentation at TPDP 2023
[arXiv]
Benign Underfitting of Stochastic Gradient Descent.
Tomer Koren,
Roi Livni,
Yishay Mansour,
Uri Sherman.
NeurIPS 2022
[arXiv]
Rate-Optimal Online Convex Optimization in Adaptive Linear Control.
Asaf Cassel,
Alon Cohen,
Tomer Koren.
NeurIPS 2022
[arXiv]
Better Best-of-Both-Worlds Bounds for Bandits with Switching Costs.
Idan Amir,
Guy Azov
Tomer Koren,
Roi Livni.
NeurIPS 2022
[arXiv]
Stability vs Implicit Bias of Gradient Methods on Separable Data and Beyond.
Matan Schliserman,
Tomer Koren.
COLT 2022
[arXiv]
Efficient Online Linear Control with Stochastic Convex Costs and Unknown Dynamics.
Asaf Cassel,
Alon Cohen,
Tomer Koren.
COLT 2022
[arXiv]
Uniform Stability for First-Order Empirical Risk Minimization.
Amit Attia,
Tomer Koren.
COLT 2022
[arXiv]
Best-of-All-Worlds Bounds for Online Learning with Feedback Graphs.
Liad Erez,
Tomer Koren.
NeurIPS 2021
[arXiv]
Optimal Rates for Random Order Online Optimization.
Uri Sherman,
Tomer Koren,
Yishay Mansour.
NeurIPS 2021
(Oral)
[arXiv]
Never Go Full Batch (in Stochastic Convex Optimization).
Idan Amir,
Yair Carmon,
Tomer Koren,
Roi Livni.
NeurIPS 2021
[arXiv]
Asynchronous Stochastic Optimization Robust to Arbitrary Delays.
Alon Cohen,
Amit Daniely,
Yoel Drori,
Tomer Koren,
Mariano Schain.
NeurIPS 2021
[arXiv]
Algorithmic Instabilities of Accelerated Gradient Descent.
Amit Attia,
Tomer Koren.
NeurIPS 2021
[arXiv]
SGD Generalizes Better Than GD (And Regularization Doesn’t Help).
Idan Amir,
Tomer Koren,
Roi Livni.
COLT 2021
[arXiv]
Lazy OCO: Online Convex Optimization on a Switching Budget.
Uri Sherman,
Tomer Koren.
COLT 2021
[arXiv]
Online Markov Decision Processes with Aggregate Bandit Feedback.
Alon Cohen,
Haim Kaplan,
Tomer Koren,
Yishay Mansour.
COLT 2021
[arXiv]
Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry.
Hilal Asi,
Vitaly Feldman,
Tomer Koren,
Kunal Talwar.
ICML 2021
[arXiv]
Online Policy Gradient for Model Free Learning of Linear Quadratic Regulators with $\sqrt{T}$ Regret.
Asaf Cassel,
Tomer Koren.
ICML 2021
[arXiv]
Adversarial Dueling Bandits.
Aadirupa Saha,
Tomer Koren,
Yishay Mansour.
ICML 2021
[arXiv]
Dueling Convex Optimization.
Aadirupa Saha,
Tomer Koren,
Yishay Mansour.
ICML 2021
Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions.
Tal Lancewicki,
Shahar Segal,
Tomer Koren,
Yishay Mansour.
ICML 2021
[arXiv]
Bandit Linear Control.
Asaf Cassel,
Tomer Koren.
NeurIPS 2020
(Spotlight)
[arXiv]
Stochastic Optimization for Laggard Data Pipelines.
Naman Agarwal,
Rohan Anil,
Tomer Koren,
Kunal Talwar,
Cyril Zhang.
NeurIPS 2020
[arXiv]
Can Implicit Bias Explain Generalization? Stochastic Convex Optimization as a Case Study.
Assaf Dauber,
Meir Feder,
Tomer Koren,
Roi Livni.
NeurIPS 2020
[arXiv]
Prediction with Corrupted Expert Advice.
Idan Amir,
Idan Attias,
Tomer Koren,
Roi Livni,
Yishay Mansour.
NeurIPS 2020
(Spotlight)
[arXiv]
Logarithmic Regret for Learning Linear Quadratic Regulators Efficiently.
Asaf Cassel,
Alon Cohen,
Tomer Koren.
ICML 2020
[arXiv]
Private Stochastic Convex Optimization: Optimal Rates in Linear Time.
Vitaly Feldman,
Tomer Koren,
Kunal Talwar.
STOC 2020;
preliminary version in NeurIPS’19 Workshop on “Privacy in Machine Learning” (PriML’19)
[arXiv]
Memory-Efficient Adaptive Optimization.
Rohan Anil,
Vineet Gupta,
Tomer Koren,
Yoram Singer.
NeurIPS 2019
[arXiv]
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences.
Ehsan Amid,
Manfred K. Warmuth,
Rohan Anil,
Tomer Koren.
NeurIPS 2019
[arXiv]
Better Algorithms for Stochastic Bandits with Adversarial Corruptions.
Anupam Gupta
Tomer Koren,
Kunal Talwar.
COLT 2019
[arXiv]
Learning Linear-Quadratic Regulators Efficiently with only $\sqrt{T}$ Regret.
Alon Cohen,
Tomer Koren,
Yishay Mansour.
ICML 2019
[arXiv]
Semi-Cyclic Stochastic Gradient Descent.
Hubert Eichner,
Tomer Koren,
Brendan McMahan,
Nathan Srebro,
Kunal Talwar.
ICML 2019
[arXiv]
Online Linear-Quadratic Control.
Alon Cohen,
Avinatan Hassidim,
Tomer Koren,
Nevena Lazic,
Yishay Mansour,
Kunal Talwar.
ICML 2018
[arXiv]
Shampoo: Preconditioned Stochastic Tensor Optimization.
Vineet Gupta,
Tomer Koren,
Yoram Singer.
ICML 2018
[arXiv]
Multi-Armed Bandits with Metric Movement Costs.
Tomer Koren,
Roi Livni,
Yishay Mansour.
NIPS 2017
[arXiv]
Affine-Invariant Online Optimization and the Low-rank Experts Problem.
Tomer Koren,
Roi Livni,
NIPS 2017
[pdf]
Bandits with Movement Costs and Adaptive Pricing.
Tomer Koren,
Roi Livni,
Yishay Mansour.
COLT 2017
[arXiv]
Tight Bounds for Bandit Combinatorial Optimization.
Alon Cohen,
Tamir Hazan,
Tomer Koren.
COLT 2017
[arXiv]
The Limits of Learning with Missing Data.
Brian Bullins,
Elad Hazan,
Tomer Koren.
NIPS 2016
[pdf]
Online Pricing With Strategic and Patient Buyers.
Michal Feldman,
Tomer Koren,
Roi Livni,
Yishay Mansour,
Aviv Zohar.
NIPS 2016
[pdf]
Online Learning with Feedback Graphs Without the Graphs.
Alon Cohen,
Tamir Hazan,
Tomer Koren.
ICML 2016
[arXiv]
Online Learning with Low Rank Experts.
Elad Hazan,
Tomer Koren,
Roi Livni,
Yishay Mansour.
COLT 2016
[arXiv]
The Computational Power of Optimization in Online Learning.
Elad Hazan,
Tomer Koren.
STOC 2016
[arXiv]
A Linear-Time Algorithm for Trust Region Problems.
Elad Hazan,
Tomer Koren.
Mathematical Programming, 158(1-2): 363-381, 2016
[arXiv]
Fast Rates for Exp-concave Empirical Risk Minimization.
Tomer Koren,
Kfir Levy.
NIPS 2015
[pdf]
Bandit Convex Optimization: $\sqrt{T}$ Regret in One Dimension.
Sébastien Bubeck,
Ofer Dekel,
Tomer Koren,
Yuval Peres.
COLT 2015
[arXiv]
Online Learning with Feedback Graphs: Beyond Bandits.
Noga Alon,
Nicolò Cesa-Bianchi,
Ofer Dekel,
Tomer Koren.
COLT 2015
[arXiv]
Oracle-Based Robust Optimization via Online Learning.
Aharon Ben-Tal,
Elad Hazan,
Tomer Koren,
Shie Mannor.
Operations Research, 63(3), 628-638, 2015
[arXiv]
The Blinded Bandit: Learning with Adaptive Feedback.
Ofer Dekel,
Elad Hazan,
Tomer Koren.
NIPS 2014
[pdf]
[full]
Chasing Ghosts: Competing with Stateful Policies.
Uriel Feige,
Tomer Koren,
Moshe Tennenholtz.
FOCS 2014
(Invited to SICOMP)
[arXiv]
Logistic Regression: Tight Bounds for Stochastic and Online Optimization.
Elad Hazan,
Tomer Koren,
Kfir Levy.
COLT 2014
[arXiv]
Online Learning with Composite Loss Functions.
Ofer Dekel,
Jian Ding,
Tomer Koren,
Yuval Peres.
COLT 2014
[arXiv]
Bandits with Switching Costs: $T^{2/3}$ Regret.
Ofer Dekel,
Jian Ding,
Tomer Koren,
Yuval Peres.
STOC 2014
[arXiv]
Distributed Exploration in Multi-Armed Bandits.
Eshcar Hillel,
Zohar Karnin,
Tomer Koren,
Ronny Lempel,
Oren Somekh.
NIPS 2013
(Spotlight)
[arXiv]
Almost Optimal Exploration in Multi-Armed Bandits.
Zohar Karnin,
Tomer Koren,
Oren Somekh.
ICML 2013
[pdf]
Linear Regression with Limited Observation.
Elad Hazan,
Tomer Koren.
ICML 2012
(Best Student Paper Runner-up)
[arXiv]
Supervised System Identification Based on Local PCA Models.
Tomer Koren,
Ronen Talmon,
Israel Cohen.
ICASSP 2012
[pdf]
Beating SGD: Learning SVMs in Sublinear Time.
Elad Hazan,
Tomer Koren,
Nathan Srebro.
NIPS 2011
[pdf]
[full]
Open Problem: Tight Convergence of SGD in Constant Dimension.
Tomer Koren,
Shahar Segal
COLT 2020
[pdf]
Disentangling Adaptive Gradient Methods from Learning Rates.
Naman Agarwal,
Rohan Anil,
Elad Hazan,
Tomer Koren,
Cyril Zhang.
Manuscript; appeared in OPT 2019
[arXiv]
Scalable Second-Order Optimization for Deep Learning.
Rohan Anil,
Vineet Gupta,
Tomer Koren,
Kevin Regan,
Yoram Singer.
Manuscript; appeared in NeurIPS’19 Workshop on “Beyond First Order Methods in ML”
[arXiv]
A Unified Approach to Adaptive Regularization in Online and Stochastic Optimization.
Vineet Gupta,
Tomer Koren,
Yoram Singer.
Manuscript, 2017
[arXiv]
Open Problem: Fast Stochastic Exp-Concave Optimization.
Tomer Koren
COLT 2013
[pdf]